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we find a resonance state. Its mass is proportional to the geometric mean of the two

AdS curvature scales, while the difference between them determines the strength of the

resonance peak. There is a complementarity between the RS zero-mode and the resonance:
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vice versa. We calculate numerically the braneworld gravitational potential and discuss the

holographic correspondence for the asymmetric model.
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1. Introduction

In the RS2 model [1] a significant role is played by the Z2 orbifold: The wavefunctions of

gravitational perturbation that are antisymmetric across the brane are projected out. On

the other hand, one could consider more general geometries in which the AdS curvatures

on either side of the brane are different. Such branes can emerge as consistent solitonic

solutions in 5D N = 1 supergravities [2]. These domain walls interpolate between the

AdS vacua with different cosmological constants, and are stable as they saturate the BPS

bound. Given the special properties of the RS spectrum, and its relevance for holography,

it appears interesting to study similar issues in the braneworld with the asymmetric bulk

geometry. Some of the properties of the asymmetric models were discussed previously, see,

e.g. [3 – 5]. In particular, the present work was motivated by ref. [4], which argued that

the asymmetric model could provide UV completion to brane induced gravity [6]. If true,

such a model could be used to look at the strong coupling dynamics in [6], from a different

perspective. Below, we will give comprehensive studies of the spectrum and emphasize the

similarities and differences of our results with the earlier ones.

At energies that exceed the AdS curvature scales (but are still below the quantum

gravity scale), both the RS2 and asymmetric model are expected to have similar behavior.

On the other hand, at energies comparable to, or somewhat below of the AdS curvature

scales, the asymmetric model should behave differently from RS2. Let us denote by k2
±

the two AdS curvatures, assuming for definiteness k− < k+. At energies below k− one can

“integrate out” a slice of AdS+ space. In the holographic description this corresponds to

integrating out modes in the energy/momentum interval k− < E < k+. The result is the

RS2 model with AdS curvature k− on both sides, in which, however, the orbifold projection
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is not imposed (i.e., the antisymmetric perturbations are kept). Moreover, in the low energy

theory, while integrating out the slice of AdS, the brane-induced Einstein-Hilbert (EH) term

will appear. The coefficient in front of this term is going to be proportional to (k2
+−k2

−)/k3
+.

Hence, at energies below k−, the original asymmetric model reduces to the RS2 model

without the orbifold projection and with the brane-induced EH term, similar to [6].

The properties of this hybrid low-energy model are well understood [7]. At energies

above the scale m∗ ∼ k3
+/(k2

+ − k2
−) gravity is similar to that of the DGP model [6].

However, in the present construction this regime can not be reached, since the effective

description in terms of the induced EH term is valid only at energies below k−, which is

always smaller than m∗. Therefore, the DGP phase, emphasized in ref. [4], does not seem

to be attainable in the asymmetric braneworld scenario.1 Nevertheless, as we will describe

below, the asymmetric models exhibits a number of interesting properties. The RS zero-

mode is still present, as long as both AdS curvatures are nonzero. Moreover, because of

the absence of the orbifold projection, both symmetric and antisymmetric modes survive.

Conventionally, these modes can be grouped into two sets. One set has properties similar

to the RS spectrum [1]. The net result of the second set is a resonance state2 with the mass

∼
√

k−k+, and width ∼ k+. The strength of the resonance peak is proportional to the

difference of the the two AdS curvatures. It vanishes in the limit when the two curvatures

are equal, and the corresponding set of states turns into the antisymmetric modes that are

projected out from the RS model by the Z2 orbifold.

The paper is organized as follows. In section 2, we set the action for the asymmetric

model and discuss its general features. In section 3 we derive the complete spectrum of

linearized perturbations and discuss some of its properties and implications. In section 4 we

calculate the gravitational potential as seen by a braneworld observer in the asymmetric

model and compare it with the potential of the RS2 model. The RS model has been

extensively studied from the point of view of its holographic dual. It seems reasonable to

expect that the asymmetric model also has a holographic description. We discuss these

issues in section 5. Conclusions are given in section 6.

2. General formalism in the asymmetric setup

The action of the braneworld with asymmetric warped geometry is given by

S =

∫

d4x

∫

y>0
dy

√−gM3
∗ {2R + 24k2

+} +

∫

d4x

∫

y<0
dy

√−gM3
∗ {2R + 24k2

−}+

+

∫

brane
d4x

√

−g∗{τ + LSM}.
(2.1)

1It was claimed in [3] that the DGP phase can be reached if different 5D Planck scales are assumed

on two different sides of the brane. However, one could perform asymmetric conformal transformations in

the bulk to equate the Planck scales on both sides, at the expense of changing the nature of the junction

condition across the brane. In the present work we will not consider such a possibility since the brane we

keep in mind is a solitonic domain wall solution of the type of ref. [2], that arises in a theory with a fixed

5D Planck scale. In principle, the asymmetry in the 5D Planck scales could potentially be generated by an

asymmetric profile of a dilaton-type field.
2A resonance in braneworlds was first discussed in refs. [8], in a different setup.
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The brane is located at y = 0 where all the localized matter/gauge (called “the Standard

Model”) fields live. If the brane tension τ is fine-tuned to be 12M3
∗ (k+ + k−), we have the

following solution for the metric in the bulk:

ds2 =e−2k+|y|dxµdxµ − dy2, for y > 0, and

ds2 =e−2k−|y|dxµdxµ − dy2, for y < 0.
(2.2)

Indices µ, ν run over directions along the brane. One could think of this geometry as being

two half-AdS spaces glued together across the brane at y = 0. k2
+ and k2

− are the AdS

curvatures on two sides of the brane. In general they are different and we define the ratio

η ≡ k−
k+

, (2.3)

as a measure of the “asymmetry” of the model.

There are questions concerning the stability of the setup. First, as we will show below,

the small fluctuations in the model contain no tachyon or ghost modes. Second, because of

the asymmetry of the bulk cosmological constants, one may worry about the stability of the

system with respect to the motion of the brane as a whole. However, when such a motion

occurs, the gravitational background readjusts itself so that there is no net energy gain/loss

on either side of the brane. Hence, there is no reason for such an instability. This is of

course consistent with the brane being a bosonic part of a supersymmetric BPS object [2].

The instability that could in general occur in the purely bosonic asymmetric case, is due

to nonperturbative tunneling from one vacuum to the other via bubble nucleation process.

However, this processes can be made exponentially small by appropriate choice of the

parameters, and will be ignored below.

Following [1] we consider small gravitational perturbations Gµν = e−2k±|y|(ηµν +

h± µν(x, y)) in the gauge ∂µh±µν = h µ
±µ = 0. We can choose this gauge and keep the

brane straight at y = 0 in a source-free approximation. Performing the coordinate trans-

formation

z ≡ sgn(y)
(

ek±|y| − 1
)

/k±,

and field redefinition h±µν ≡ ψ
(m)
±µνe

−|k±|y/2eipx, where m2 ≡ p2, we find the “Schrödinger”

equation for ψ(m). Ignoring the tensorial structure it reads

[−1

2
∂2

z + V±(z)]ψ
(m)
± (z) = m2ψ

(m)
± (z), (2.4)

where the potential is given by

V±(z) =
15k2

±

8(k±|z| + 1)2
− 3

4
(k+ + k−)δ(z). (2.5)

This potential is sketched in figure 1 with the δ-function regularized. It differs from that

for the RS model as the heights of the two barriers on different sides of the brane are not

equal.

We can identify four regimes for the potential: (1). Above both barriers, the gravity

should behave as a 5-D theory; (2). at energies between the two peaks, one would expect
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Figure 1: Potential V (z) where the δ-function is regularized.

novelties since this regime is absent in RS2; gravitons of such energies can pass the barrier

through tunneling on one side, but they are allowed to freely propagate on the other side as

their energy is above the peak; (3). Below both barriers we are in what could be called the

RS-phase, where we expect the model to exhibit properties similar to RS. Furthermore, the

zero-mode, if exists, is localized on the brane and gives rise to effective 4-D interactions.

General solution of this equation can be found as

ψ
(m)
± (z) = (|z| + 1/k±)1/2 [A±Y2(m(|z| + 1/k±)) + B±J2(m(|z| + 1/k±))] . (2.6)

Here and below Y2 and J2 are Bessel functions and A± and B± are constant coefficients to

be determined by boundary conditions. The junction conditions across the brane are

ψ
(m)
+ (0) = ψ

(m)
− (0), and ψ

(m)
+ (0)′ − ψ

(m)
− (0)′ +

3

2
(k+ + k−)ψ(m)(0) = 0, (2.7)

where the derivative is with respect to z.

We normalize the wave functions in the following way. While z → ±∞ all wave-

functions ψ
(m)
± (z) asymptote to plain waves. It can be checked that this is equivalent to

the usual orthonormal condition in the limit L → +∞, where L is the distance in the

z-coordinate between the brane-world and a fictitious regulator brane. Since for z → ±∞,

√
zY2(mz) ∼

√

2

πm
sin

(

mz − 5

4
π

)

,
√

zJ2(mz) ∼
√

2

πm
cos

(

mz − 5

4
π

)

, (2.8)

it is natural to parametrize the normalization coefficients as:

ψ
(m)
± (z) = ε±

√

πm(|z| + 1/k±)

2(1 + α2
±)

[α±Y2(m(|z| + 1/k±)) + J2(m(|z| + 1/k±))] , (2.9)

with α± to be determined by the junction conditions (2.7). Using the properties of the

Bessel’s functions, they are found to be

ε+
√

k+(1 + α2
+)

[α+Y2+ + J2+] =
ε−

√

k−(1 + α2
−)

[α−Y2− + J2−], (2.10)
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ε+
√

k+(1 + α2
+)

[α+Y1+ + J1+] = − ε−
√

k−(1 + α2
−)

[α−Y1− + J1−]. (2.11)

Here Y1,2± ≡ Y1,2(m/k±) and J1,2± ≡ J1,2(m/k±).

We have introduced the sign factors ε± in the parametrizations above. They are

functions of m/k± and take the values of ±1 only.3

In the limiting case when one of the k’s is 0, the wave-functions on the flat side turn

into plane waves. Both equations (2.10) and (2.11) are simplified in this case. Assuming

that the “−”-side is flat, the wave-functions are simply given by ψ(m)(z) = sin(mz + β),

with a phase shift angle β to be determined by the junction conditions. The latter, derived

directly from (2.7), are
√

πm

2k(1 + α2)
[αY2(m/k) + J2(m/k)] = sin β, (2.12)

√

πm

2k(1 + α2)
[αY1(m/k) + J1(m/k)] = − cos β. (2.13)

We have omitted all the + signs for the quantities on the l.h.s. of the two equations above.

It is no longer necessary to include the sign factor ε+ since it can always be absorbed into

the redefinition of β.

3. Spectrum and its properties

In the following section we will discuss in details the solutions to the boundary conditions

described above. First we verify whether the zero-mode of the RS model still exists in

the asymmetric scenario. As we will see this indeed is the case, however, the zero-mode

becomes weaker as one of the AdS curvatures decreases and disappears completely from

the spectrum if the bulk space-time on one side is flat. Regarding the massive KK modes,

we will find that alongside the RS-like modes, there exists a new solution in the asymmetric

scenario which behaves as a resonance.

3.1 Zero-mode wave function

In the RS2 model, the zero-mode is localized on the brane and there it gives rise to the

usual 4-D gravity at low energy. In the asymmetric case, the “Schrödinger” equation for

the zero-mode reads
[

− 1

2
∂2

z + V (z)

]

ψ0(z) = 0, (3.1)

where V (z) is the potential defined in the previous section (2.5). For generic k+ and k−,

the normalized solution to this equation can be found as

ψ0(z) =

√

2k−k+

k− + k+

[

θ(−z)

(k−|z| + 1)3/2
+

θ(z)

(k+|z| + 1)3/2

]

, (3.2)

which is plotted in figure 2. Here θ(x) is the step function. This zero-mode is localized.

3In solving the junction conditions one has to take the square of the ratio of the two equations. Doing

so the sign becomes ill-defined. To recover it, we must choose the sign-factors ε± accordingly.
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Figure 2: Behavior of the zero-mode wave-function with k
−

= .2 and k+ = 1.

The localization width is proportional to 1/k− on the left side and to 1/k+ on the right.

The prefactor of the wave-function is determined by fixing the norm of ψ(z) to be 1. This

sets the relation between the bulk Planck mass M∗ and 4-D Planck mass measured on the

brane as

M2
pl = M3

∗

(

1

k+
+

1

k−

)

. (3.3)

Notice that as one of the two AdS curvatures decreases, this zero-mode gradually

delocalizes in the extra dimension while the effective 4-D Newton coupling tends to zero.

Eventually, if the bulk space on one side of the brane is flat, the wave-function of the

zero-mode becomes non-normalizable. Indeed as k− → 0 the overall multiplicative factor

[2k+k−/(k+ + k−)]1/2 goes to zero. Therefore in this limit the strength of the zero-mode

vanishes on the brane. Equivalently the effective 4-D Planck mass becomes infinite, and

Newton’s constant tends to zero.

3.2 Spectrum for k− = 0 and k+ 6= 0

We now turn to the massive modes. As a warm-up, we first discuss the spectrum in a

simpler case where one of the curvatures vanishes so that the bulk space-time on one side

of the brane is flat. The boundary conditions are given by equations (2.12) and (2.13). In

the limit m/k ¿ 1, their solutions can be explicitly found. In the leading order of the m/k

expansion

Y2(m/k) ∼ − 4k2

πm2
, Y1(m/k) ∼ − 2k

πm
and

J2(m/k) ∼ m2

8k2
, J1(m/k) ∼ m

2k
.

(3.4)

It is reasonable to expect that, in the limit m/k ¿ 1, the Y -terms in both equations

dominate; this has to be verified on the solution by checking how the constant α defined

in (2.9) scales with m/k.

With these approximations we find

− tan β =
Y2(m/k)

Y1(m/k)
=

2k

m
, (3.5)
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and, therefore, the strength of the KK modes on the brane is given by

ψ(m)(0)2 = sin2 β =
1

1 + m2/4k2
. (3.6)

It is interesting to point out that this solution has a similar form as that of the DGP

model [6, 10], with the crossover distance rc = 1/(2k). This was first noticed by the

authors of [4]. We will discuss the physical significance of this similarity in subsection 3.4.

First we check that our approximation is consistent. Notice that in this approximation

α ∼
√

m

k

m

k
. (3.7)

One can easily verify that in both equation (2.12) and (2.13), Y -terms do dominate as

expected.

Exact solutions to (2.12) and (2.13) can be found by solving the quadratic equations.

The strengths of the KK modes on the brane are given as follows:

∆ =
2k

πm
(Y 2

1 + Y 2
2 + J2

1 + J2
2 ) − 4k2

π2m2
− (Y1J2 − Y2J1)

2, (3.8)

α1,2 =
−(Y1J1 + Y2J2) ±

√
∆

Y 2
1 + Y 2

2 − 2k/(πm)
, (3.9)

ψ
(m)
1,2 (0)2 =

πm

2k(1 + α2
1,2)

[α1,2Y2 + J2]
2. (3.10)

We find that there exist two different solutions. On figure 3 we plot both ψ
(m)
1,2 (0)2 as

functions of m/k. Just for comparison we also plot the DGP spectrum with rc = 1/(2k).

As we see there exists a part of the spectrum that is almost constant. This is of course

expected. When we have a flat space on one side of the brane, KK gravitons of arbitrary

energy can easily probe into the bulk.4 However, in addition to the “flat” spectrum there

exists a new solution which has a resonance type behavior. The peak of this resonance is

located at m = 0 and its width is of the order of the curvature on the AdS side.

An immediate question following these observations arises. Does this new resonance

state persist for arbitrary values of k+ 6= k−? This is the issue that we will address in the

next subsection.

3.3 General spectrum for k+k− 6= 0

When both k± 6= 0 and are not equal to each other, one must solve equation (2.10)

and (2.11) exactly. We give below the square of the strengths of the two solutions on the

brane at z = 0. Defining

η ≡ k−
k+

, (3.11)

4The “flat” spectrum is not exactly flat, but around masses of the order of the AdS curvature it departs

from being constant showing a tiny structure as shown in figure 4. This is expected since at that mass scale

the graviton mode can tunnel into the curved side of the brane.
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Figure 3: ψ(m)(0)2 ∼ m/k. Dashed curve is for the DGP model.
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Figure 4: ψ(m)(0)2 ∼ m/k. Small structure of the “flat” solution plotted alone. Dashed curve is

for the DGP model.

A =η [(J2−Y1+ + J1−Y2+)(J1+J2− + J2+J1−)+

+(Y1+Y2− + Y1−Y2+)(J1+Y2− + J2+Y1−) ],
(3.12)

B =
2k−
πm

·

√

√

√

√

√

√

√

η[(J2−Y1+ + J1−Y2+)2 + (J1+J2− + J2+J1−)2+

+ (Y1+Y2− + Y1−Y2+)2 + (J1+Y2− + J2+Y1−)2]+

−η2[(J1+Y2+ − J2+Y1+)2 + 4k2
+/(πm)2]

, (3.13)

D = −η[(Y1+Y2− + Y1−Y2+)2 + (J2−Y1+ + J1−Y2+)2] +

(

2k−
πm

)2

, (3.14)

on the brane, the two solutions are given by

ψ
(m)
1 (0)2 =

πm

k+

[J2+D + Y2+(A − B)]2

2[D2 + (A − B)2]
, (3.15)

ψ
(m)
2 (0)2 =

πm

k+

[J2+D + Y2+(A + B)]2

2[D2 + (A + B)2]
. (3.16)
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Figure 5: Two solutions ψ
(m)
1,2 (0)2 (Y-axis) ∼ m/k+, with different values of η = 0.005 (solid line),

0.2 (dashed-dot line) and 0.75 (dashed line).

The solutions with different values of η are plotted on figure 5. There are always two

distinct solutions. One of them resembles the RS KK spectrum, and it will be referred to

as the RS-like spectrum. The other one has a resonance type behavior and will be referred

to as the resonance mode.

Some comments on the qualitative properties of the two spectra are in order. First of

all, when η → 1 the strength of the resonance mode on the brane decreases and tends to

zero. This confirms the argument we have made in the introduction: in the RS limit, the

new modes we are considering becomes anti-symmetric wave-functions and automatically

vanishes on the brane. In the original RS model they are modded out by orbifolding the

extra dimension. Only when we split k+ from k−, we no longer have any symmetry reason

to discriminate between the two solutions. Neither of them is symmetric or anti-symmetric

any more and we must retain them both.

On the other hand, when η → 0, or + ∞, i.e., when one of the two sides is flat, we

recover the results found in the previous subsection.

It is a right place here to emphasize that the zero-mode strength is given by

|ψ0(0)| =

√

2k−k+

k− + k+
. (3.17)

When η → 0 it vanishes while the resonance reaches its maximal strength. On the other

hand, the zero-mode has its maximal strength in the RS limit when the resonance decouples.

We see that there is a complementarity between the resonance and zero-mode: when one

disappears the other is present, and vice versa. When k− differs from k+, the amplitude

of the zero-mode weakens in favor of the resonance.

Finally we point out that in the small m/k+ region, when η is sufficiently different

from 1, the once smooth RS-like spectrum starts developing a little distortion. That is

how, when η changes, the spectrum deforms and links between the smooth RS-spectrum

(η = 1) and the almost flat one (η = 0), discussed in the previous subsection. Figure 6

demonstrates such a behavior.
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Figure 6: ψ
(m)
1 (0)2 (Y-axis) ∼ m/k+, with η = 0.01 (solid line), 0.008 (dashed-dot line) and 0.005

(dashed line) respectively.

It can be checked that when m ¿
√

k+k−, both our solutions are approximately linear

in m, in particular

|ψ(m)
2 |2 ∼ π(1 − η3/2)2

η(1 + η)2
m. (3.18)

On the other hand, in the limit m → ∞, the RS mode approaches 1 and the new mode

tends to 0 as 1/m2.

3.4 On mixing and on resonance mass

First we turn to an important question: Are the two distinct KK sectors orthogonal to

each other? If they were not, in the effective action on the 4-D brane, a mixing term of

the two graviton modes would appear with a mixing coefficient fm.

In the RS limit the two solutions are symmetric and anti-symmetric wave-function

respectively and are orthogonal.

To calculate the mixing fm =
∫

dzψ
(m)
1 (z)ψ

(m)
2 (z)/

∫

dz, we follow the normalization

procedure described in [1]. Introduce the regulator branes at zc± on both sides of the brane

and correspondingly impose the new boundary condition there:

∂zψ
(m)
± (zc±) = − 3k±

2(k±zc± + 1)
ψ

(m)
± (zc±). (3.19)

The zero-mode satisfies this condition and remains unchanged. When the regulator brane is

at a finite distance from the brane where matter is localized, these conditions will quantize

the KK masses in units of 1/zc±. For simplicity we fix zc+ = zc− = zc so that the discretized

mass spectrum is equally distributed. In general, one could set both zc± arbitrarily, but

the result is a more complicated discretization of the mass spectrum of KK gravitons since

boundary conditions on both regulator branes must be satisfied simultaneously. This, in

principle, must give the same physical results when both regulator branes are taken to

infinity but is mathematically more difficult to deal with. When zc → ∞ the normalization

constants of all the wave-functions are predominately those of plane waves, as in this limit

– 10 –
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Figure 7: Log∼Log plot of the resonance mass M versus k
−

k+ (both axes are scaled by 100).

the solutions we found approach free plane waves. In this case it is easy to calculate the

mixing fm which is given by

fm = ε1+ε2+ cos (arctan α1+ − arctan α2+)

+ ε1−ε2− cos (arctan α1− − arctan α2−)

=
ε1+ε2+(1 + α1+α2+)
√

(1 + α2
1+)(1 + α2

2+)
+

ε1−ε2−(1 + α1−α2−)
√

(1 + α2
1−)(1 + α2

2−)
.

(3.20)

Here ε1,2± are the sign factors for each wave-function as described before and α1,2± are the

two solutions of equations (2.10) and (2.11). We computed the expression for the mixing

coefficients numerically. For any values of the ratio η and mass m, fm’s vanish with an

extremely high accuracy (10−13 or so). This suggests that the two spectra are indeed

orthogonal to each other.

The next question of interest is the mass of the resonance mode, defined as the location

of its peak. Unfortunately no analytic solution is known for the dependence of this mass

M on k− and k+. From symmetry and dimensional analysis, it is reasonable to expect

that M ∼
√

k−k+. This can be verified numerically as follows. We solve for the mass

M numerically for different values of k±. A log∼log-plot of M versus k+k− is shown in

figure 7. It suggests that M ∼
√

k+k−. We point out that the width of the resonance is

always of order of the greatest curvature (k+).

Finally we would like to comment a bit more on the relation between the asymmetric

model and the DGP model. As we have seen, when k+ ∼ k− the asymmetric and RS

models are almost identical and have nothing similar to DGP. When η ¿ 1, we have the

following three regions in terms of the distance r as measured on the brane. (1). r > 1/k±:

Both the asymmetric and RS model approach the same 4-D effective theory, in this regime

the zero-mode dominates. (2). 1/k+ . r . 1/k−: In this region we can integrate out

the bulk space on the k+ side and this procedure leaves us with an induced 4-D Einstein-

Hilbert term in the effective action [10]. Therefore we expect that the theory behaves as

– 11 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
3

the DGP model with only a half of the bulk space. In the extreme case when the bulk

space on one side is flat, we are in this region whenever r & 1/k, k is the curvature of

the AdS side (it should be reminded that no zero mode is present in this extreme case,

therefore the previously discussed case does not apply). This is perfectly consistent with

what we discussed in section 3.2, where we have shown that the spectrum agrees with that

of the DGP model exactly for r À 1/k. Notice, however, that this region coincides with

the domain r À rc in the corresponding DGP model where gravity already switches to the

5-D behavior. (3). r < 1/k±: In this region the theory should give rise to 5-D gravitational

interactions.

4. Gravitational potential on the brane

It is instructive to compare the asymmetric model with AdS curvatures k+ and k− with

the RS model in which the curvature k satisfies

1

2

(

1

k+
+

1

k−

)

=
1

k
. (4.1)

As long as the above relation holds, the effective Planck mass Mpl measured on the brane

for both models is the same.

Let us first look at the 2-particles gravitational potentials on the brane-world. They

are given by

VRS(r) =
1

M2
pl

m1m2

r
+

1

M3
∗

∫ ∞

0
dm

m1m2e
−mr

r
ψRS(0)(m) 2, (4.2)

in the RS, and

Vasym(r) =
1

M2
pl

m1m2

r
+

1

M3
∗

∫ ∞

0
dm

m1m2e
−mr

r
[ψ1(0)

(m) 2 + ψ2(0)
(m) 2], (4.3)

in the asymmetric model. It is hard to calculate the integrals analytically but numerical

comparison between the two model can be done. Figure 8 shows the ratio Vasym/VRS

versus η = k−/k+. Each curve represents Vasym/VRS measured at a fixed r. For dashed

curves, from bottom to up, r k+ = 25, 5, 1 respectively, and for solid curves, from top to

down, r k+ = 1/5, 1/10, 1/50. As expected, when η → 1, the two potentials are equal

at all distances. While for η 6= 1 they are mostly different at distances comparable to

1/
√

k+k− ∼ 1/Mres.

A plot of Vasym/VRS versus r k+ with a fixed value of η = 0.2 is presented on figure 8. At

very short distances, both models approach the usual 5-D theory. At very large distances,

the zero-mode in both models dominates and gives rise to the same 4-D gravitational

potentials (we should stress that we have fixed the effective 4-D Planck mass to be the

same for both models). The largest departure is at scales comparable to 1/Mres, where the

resonance is not exponentially suppressed in the integral in (4.3).
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Figure 8: Vasym(r)/VRS(r) versus η.
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Figure 9: Vasym(r)/VRS(r) versus r k+.

5. Comments on holographic correspondence

The AdS/CFT (holographic) correspondence [11 – 13] provides a powerful tool to explore

strongly coupled field theories by looking at their weakly coupled gravity duals. The

holographic correspondence for the RS2 model has been studied in great detail. AdS

gravity is dual to a conformal field theory (CFT ) in lower dimension, and the presence of

the brane in the RS2 model gives rise to a UV cut-off and to a massless 4D graviton on the

CFT side. The main evidence for the duality between RS and a UV cut-off CFT coupled

to 4D gravity were obtained in refs. [14 – 16]: The leading correction to the braneworld

Newton potential found by RS on the gravity side is reproduced by one-loop correction to

the graviton propagator in CFT [14, 15]. This radiative correction is evaluated from the

one-loop graviton self-energy graph where only the CFT fields are running in the loop.

For any 4D massless theory the finite part of such a loop is proportional to log(p2
E), where

p2
E is an euclidean momentum square flowing through the loop diagram. This term, after
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Fourier transformation, gives the 1/r3 correction to the Newton potential which exactly

matches the correction due to the bulk KK gravitons [15]. Furthermore, the very same

calculation suggests the following dictionary: the RS2 model with bulk curvature k2 is dual

to SU(N) CFT with N2 ∼ M3
? /k3, where M? is the Planck mass of 5D gravity. The field

theory UV cut-off Λ is proportional to the curvature scale k.

It is reasonable to expect that the holographic dual also exists for the asymmetric

braneworld. Schematically, the dual of the asymmetric warped braneworld would be a

theory that consists of two sectors, CFT− ⊗ CFT+, with number of colors N2
± ∼ M3

? /k3
±

and cut-off scales Λ± ∼ k± respectively. It is expected that the resonance is dual to a

composite state of CFT+ ⊗ CFT−, made of states living in both CFT ’s. Its presence is

due to the interaction terms, which have to be proportional to the difference of the two

curvatures, so that in the limit η → 1 the composite state disappears from the spectrum.

Assuming for definiteness that Λ+ > Λ−, we can integrate out the modes with energies

between Λ− and Λ+ in the CFT+ sector. The resulting low-energy effective field theory

reduces to CFT+ ⊗ CFT− with the common UV cutoff Λ−, an additional induced cosmo-

logical constant (which has to be tuned to zero) and, most importantly, the induced EH

term. The coefficient of the latter is proportional to the difference between Λ+ and Λ−,

and can be evaluated by “integrating out” [16], [17] a slab of the AdS space between 1/k+

and 1/k−

2M3
?

∫ 1/k−

1/k+

dz
1

k3
+z3

∫

d4x

√

−g(4)R(4) = M3
?

k2
+ − k2

−

k3
+

∫

d4x

√

−g(4)R(4). (5.1)

Except for this term, the resulting effective theory resembles the RS2 model. On the other

hand, RS2 is dual to CFT , not to CFT⊗CFT . This difference is due to the orbifold projec-

tion imposed in RS, which results in the removal of the antisymmetric gravitational pertur-

bation from the spectrum. In the effective low energy theory of the asymmetric braneworld,

no such a projection is imposed, and, therefore, both symmetric and antisymmetric modes

are retained. Hence, the product structure CFT+⊗CFT− → CFTsym⊗CFTasym emerges.

However, in the low-energy regime, only symmetric modes are coupled to the brane local-

ized 4D matter, while the antisymmetric ones are null on the brane. Because of this, one

of the two CFT’s in the low energy theory will not couple directly to the 4D matter. The

effects of the high-scale coupling of this CFT to the localized matter are encoded, in the

low energy theory, in the induced EH term. This is consistent with the earlier observation

that the resonance is above the cutoff Λ−.

6. Conclusions

We have studied in detail the spectrum of gravitational perturbations in a brane-world

scenario with asymmetric warped geometry. We have shown that even when the two AdS

curvatures k2
± are different, the RS zero-mode still exists. Its strength on the brane is given

by ∼ [2k+k−/(k+ + k−)]1/2, which vanishes if one side of the brane becomes space-time

flat.
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A novelty is found in the massive KK graviton spectrum.5 When the warp factors

are different, there exists a resonance mode in addition to the RS-like spectrum. The

peak of this resonance is located at M ∼
√

k+k− and it has a width of the order of

the larger curvature scale. As the asymmetry between k+ 6= k− grows, the zero-mode

becomes weaker and partially transmutes into the resonance mode. In the limit when the

bulk space-time on one side of the brane is flat, the resonance mode reaches its maximal

strength while the zero-mode is no longer normalizable and disappears from the spectrum.

On the gravity side we studied numerically the 2-body gravitational potential measured on

the brane-world, and discussed the holographic description of the asymmetric model. The

obtained results can be useful for the particle physics model building via the AdS/CFT

correspondence, as well as for the cosmology of early universe when studied in the context

of warped space-times.
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